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I 
r Abstract 

i o 
By means of a systematic approximation based on the 

• 

perturbation theory,   from tii6  three-dimensional,   non- 

linear  elasticity  theory,    rive   partial    differential 

equations are  obtained  for   the non-linear  oscillations  of 
• 

visco-elastic olates.  The olate can undergo a finite trans- 

verse deflection. The rotatory inertia, shear deformation and 

effect of body force and moment components are taken into 

account.  The present theory is the generalization of Foppl- 

Karman-Timoshenko theory of large static deflection on the 

one hand and Uflyand-Mindlin theory of small oscillation 

theory on the other hand. 

Boundary and initial conditions are discussed and an 

expression for the strain energy is given - 

1.  Introduction 

Foppl obtained two simultaneous non-linear partial 

differential equations to study the large static deflectio.i 

of plates [1].  Von Karman and 3. Timoshenkc reformulated and 

studied these equations for various plate oroblems.  Many 

other authors used these equations, now known as Fo'ppl-Karman- 

Timoshenko theory.  Assumptions or this the<->rv ire not 

systematic and thus it is desiracle to know whether there are 

other terms hissing from these equations which are of the 

same order of magnitude with the present ones.  Also for 

cynamic problems Lhc ir-.crtia ter.j.5 must oe taken MILO account. 

The effect of shear deformation in static plate problems 
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was first considered by E. Reissner [2].  Uflyand [3] and 

Mindlin [4] have reformulated small oscillation problems of 

plates and took into account the effect of rotatory inertia 

and shear deformation. 

Recently for the general formulation of shell problems, 

many papers have appeared, most of which are in tensor 

notation or written in intrinsic coordinates which do not 

lend themselves easily to application [5, 6, 7], 

The highly rigorous nature of these papers leads to very 

high complexity, thus making the solution of even very simple 

problems prohibitive or impossible. The use of the highly 

productive method of engineers, the intuition, is thereby 

hindered. 

In impact problems, where the transient stage is important, 

a fuither complication must be included into the formulation, 

namely the internal damping effect. 

With t'.iese views in mind, the reformulation of the plate 

theory is made.  Consequently, the present theory includes the 

effects of: (a) finite transverse deflection, (b) shear 

deformation, (c) rotatory inertia, (d) internal damping, 

(«) body force and moments. The theory is based on the following 

assumptions: 

1. The deformation components are expandable into pcv*er 

series of non-dimensional transverse coordinates C times 

small perturbation parameter e which is choser. as the non- 

dimensional thickness of the plate (see equation (3) below). 
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2. Hooke's Law is valid between stress and strain 

components. 

3. The coefficient of shear viscosity, at the median 

plane, is a constant multiple of the coefficient of normal 

viscosity at the same plane. 

The first assumption is similar to Goodier's [8] 

assumption in treating problems of beam and plate.  He 

assumes that the components of the stress tensor are developable 

into power series of non-dimensional thickness parameter e. 

In treating the finite deformation problems, this method 

becomes very compliaated and cumbersome.  It seems that the 

same purpose can be accomplished directly by dealing with the 

deformation components. We thus start from a poirt at which 

he ends up.  The advantage of this procedure is that it avoids 

integration of some systems of differential equations which 

may be quite complicated in a finite deformation theory. 

Difficulty arises however in obtaining desirable orders of 

magnitude for transverse stress components for the isotropic 

material.  While this ooint is easily explained for an 

orthotropic material, it cannot oe expiamea lor an iso- 

troDic material without considering the higher order terms in 

the expressions of tne deformation comoonents.  3ucn cin effort 

seams to be hardly worth the ^.lOuLIe. 

Ihe second assumption is controversial but a commonly 

used one. 

The last assumption need not be included into the theory. 

The whole theory can be carriea out without using this assump- 

tion.  However, unnecessary comoli cations a^e avoided by usiruj it. 



1 
-4- 

The present theory ends after obtaining differential 

equations of the lowest order pertinent functions in the 

expansion of deformation components. 

Five partial differential equations are obtained whose 

solution is believed to explain the behavior of finite 

oscillations of visco-elastic olates to a reasonable degree 

of approximation.  These equations are non-linear, and contain 

all previous technical plate theories as special cases. 

Boundary and initial conditions are discussed.  It is 

found that five conditions are needed for every part of the 

edge surface which has continuous normals possessing first 

order continuous derivatives. 

Finally, ^^  expression for the strain energy is given 

which consists of two parts, namely: Elastic energy and 

Energy of dissipation. 

2.  Components of Strain Tensor 

Let x , x , x° or invariably x, y, z be the rectangular 

cartesian coordinates of a point of the plate before de- 

1   2 formation.  We select the (x , x )-plane as the median olane 
3 

of the olate and x  as the direction perpendicular to this 

"lane, so that x , nL, x evokes a right-handed coordinate system. 
3 

The planes x - • h/2 will be taken as the upper and lower 

faces of the olate.  Components of the deformation vector in 

rectangular cartesian coordinates will be denoted by u  or 

(u, v, w) .and ccvariant components of the strain tensor by 

e • • or (c ,    ...,e  ).  The length element ds in the deformed 

body is given by [9]: 

tjfff. 
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ds* - g  dxxdxJ - (5i. • 2ei:j) dx\ix
J (1) 

k *  k 
2CJ. - *£• isi* *C in 

1J  axJ  dx"  axA ax- 
(i.j - 1,2.3)        (2) 

wheret 

•• (1  when i-j 
81J 4 

lo when ifi 
5ii " 5>J lo when i^j 

are the Kronecker deltas, and g. • are the covariant components 

of the metric tensor for the deformed body. 

Throughout the paoer the usual summation convention will 

be used; namely, reoeated indices denote summation over the 

range (1, 2, 3).  '.Ve note that there is no need to distinguish 

covariant mixed and contravariant components of any tensor in 

cartesian coordinate?*.  Hence e • • e.^ • e  , u1 • u, . 

LI  2  3 We assume that ulr , x ,x ,t) can be expanded into power 

series of x°/h » C: 

u/a-e2[uo(l,T,,t) + Cu^i.n.t) • e3C3u3 U.tj.t) •...] \ 

where £, n, C are non-dimensional coordinates, a is a tyoical 

length and e is a small oaraueter. 

x/a " I ,  y/a * *) # z/a = eC , e» h/a , e« 1 (4) 

The explicit forms of the strain components are obtained by 

substituting aquations (3) into equations (2).  Hence: 

1 



-6- 

*** 

xx    «• o,£  2  o,£     j.,t,J 

yy    u O,T^  <s O.TJ     1,T}
J 

2rl/. 2 
zz e £"TU1 + vl * + 2Cw2^ * 0(e } 

- L,2 
xy  2  L O,T)    o,\ o,\   o,-n     l,r]       l,\ 

>(5) 

eyz " Ye(vl * "o,!,1 + 0{e3) 

£zx'7e(ul* wo#l) *0(e
3) 

where indices after a comaa represent differentiation,i.e. 

u  » » du0/<H etc.  In equation (5) the second order terms 

represent the effect of large daformations which would be en- 

countered in a second order theory.  The second order terms 

occuring in the expressions of e  , ewt anc* exv 
are identical xx  yy      xy 

to those of Foppl-Karman-Timoshenko theory of large static 

deflection.  The classical olate theory assumes u, • -w „ , 
1    o»t 

v, • -w^  , hence (e. „, e _) " C(e ). Consequently the x    O#T) yz  zx 

transverse shear strains e ,   z     ,   as well as e  , are taken yz  zx zz 

as zero.  The present theory will not ignore these strain 

comoonents. 

i  t 
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3.  Stress-Strain Relations for an Elastic Medium with Internal 

Damping 

«^ 

The literature contains various attempts to generalize 

the classical stress-strain law of elasticity so as to include 

the effect of internal damping.  Early discoveries are due to 

0. Meyer [10], W. Voigt [11] and K. Sezawa [12] which can, in 

the modern notation, be expressed as: 

6 - B% - e\ 

) 6 5.. • (* + 2n' pz^ 

> (6) 

0 

where \ and u. are the classical Lame constants and \*  and \i' 

are the normal and shear solid viscosities.  Here a.  . are 

the mixed components of the stress tensor which are referred 

to the curvilinear coordinates y of the deformed state, 

while strain components are referred to the cartesian coordinates 

x of the undeformed state. 

1     ? Coordinates y and y' are perpendicular to each other and 
3 

lie in the tangent plane of the median plane and y is per- 

pendicular to this plane and makes a right hand system with 

y and y . 

The controversial assumption underlying equations (6) 

seems to be as good as any one in use relating stress components 

to strain components. 

Coefficients \, \x,   are related to Young's modulus £, 

Shear modulus G and Poisson's ratio  v by the following 

t-k& 
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O 

relations: 

\ - VE/(1-2V)(14*)  ,   u » G 

In a similar manner E', G' and v can be defined by: 

\'  - vE'/(l"2v) (1+v) ,  n' - 6' 

Consequently, if one defines: 

(7) 

(8) 

h   "*. +\'j£       . £ = |i * |A If 

E - E • E , a 7TF G - G + G oT 

(9) 

equations (6) take the same form as those of the classical 

elasticity theory, which further leads to a considerable 

simplification. 

We note that the strain components in equations (6) 

are exoressed in cartesian coordinates.  Hence covariant, 

contravariant and mixed comoonents of stress tensor need not 

be distinguished for the present approximation. 

When a Voigt solid is subject to oscillating stresses, the 

rate of dissipation of energy is proportional to the square of 

the frequency of oscillation, as may be observed from 

equation (6) for the one-dimensional case.  Lord Kelvin [13] 

has observed that the rate of dissipation of energy increases 

less rapidly than the square of the frequency.  This led to 

the generalization of Poynting and Thomson £14] and more 

recently to that of Alfrey [15, 16], which contains all other 

theories given before as a soecial case.   Alfrey's stress- 

L. boltzmann vies  the superposition principle which 

seems to be less suitable for the purpose of generalization. 
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strain relations for an incompressible material are expressed 

in the following fors: 

Poik " P °  5ik + 2Qeik - 

Eii - ell + e22 + e33 * ° 

0 " 7(011 + a22 + a33) 

(10) 

m 
P « Z 

i-o 3 at1 i-o x at1 

U 

where constants a. and b. are to be determined from the 

experiment. 

We now generalize this equation further to include normal 

viscosities in the case of compressible material, and write: 

Poik " Re5ik + 2Qeik 

{   a1 R "i-o Ci 1? •  6 " '" " '" **22  +'33 
(11) 

Here P and Q are the same as in equation (10). We now solve 

°ik *rom  differential equation (11) by using operational 

methods. 

Let F(s) be the Laplace transform of F(t) as defined by: 

F(s) -^°° e"8tF(t)dt (12) 

Applying the  Laplace transform to the expression of Po.,   in 

equation   (11)   (i.e.   by taking Po^t.  foi   F(t)   in equation   (12)), 

we  obtain 

'ik * *"•(«)  ®   (xl'  x2-   x3'   s)   5ij  +2^(s) 

*ij(xl'   x2'   x3'   s)  *  ^(xl'   x2*   x3*   s* (13) 

iafa 
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where: 

L(s) 

N(s) 

£  c^ 
m m 

( t      cis
i)/( £  ais

i), M(s) - ( E bis
i)/(Z a.s') 

imo        i«o i»o     i»o 

m-1 
( Z Dis

i)/( 2 a^1) , Di - D^x-^x^Xj) / 

(14) 

Taking the inverse transform of equation (13) we obtain 

U ' 5i/o Lo(t'T)' e(x1#x?,x3.T)dr 

+ 3T*M0(t-T) eij(x1#x2#x3fT)dT* No(x1.x2rx3.t) 

If the system has no initial stress then o,. must vanish with 

e..# thus giving N * 0.  Furthermore, writing the elastic 

parts separately in equation (15) we have: 

(15) 

°ij " x66a + ^eij + sij <T ut'x) e(x1.x2.x3,T 

•2 ,£* M(t-x)ei. (x1,x2,x3,x»dr 

)dT 

(16) 

where: 

L(t) - LQ(t) ~\ M(t) - MQ(t) -u (17) 

Thus, we arrived at V„ Volterra's fl?] stress-strain 

relation for a medium having heredity. Consequently, the 

general internal damoing law stated by equation (11) is identical 

to hereditary damping which is frequently treated as a different 

and rather more general phenomenon.  Equation (16) is, of 

course, identical to those used by E. Volterra [16] for an 

elastic medium with hereditary damping. 
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A useful form of the stress-strain relations (16) is 

obtained if we use the convolution multiplication defined by: 

F * 0 - f*  F(t-x)*(T)dx (IB) 

We note that F * 4>  • 4> * F.  Equation (16) can now be 

written si.aply: 

'ij-i^irV ij (19) 

wheie the operators \ and \i  are defined by: 
*    * 

\  - \ + L*     u = ii + M* (20) 

Equation (19) has exactly the same form of elastic stress- 

strain relations for a homogeneous, isotropic media. There- 

fore, substitution of \    and u  for \  and u. of classical 

elasticity theory in all equations of elasto-dynamics, gives 

the corresponding •equations for a medium with internal damping. 

Attention must be given to the fact, however, that \    and \i 

have time derivatives. 

A more compact relation would be obtained if we 

eliminated 6 in equation (19). Writing i « j we obtain: 

a  - (fc • f £)8 (2l) 

Subtracting hydrostatic  pressure 08..   from equation   ('19), 

we  obtain: 

"ij " 2 4 *ij <22) 

iSM 
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( > 

where «..   and e, .   are  the deTiatric parta -of the  atr.aa and 

strain  tensors and axe defined by: 

'ij "ij *     °tU. e. e 
ij       7 "ij (23) 

It is important to note that the functions L and M of the stress- 

strain relations (16) may be discontinuous functions. Howevei, 

the conTolution integrals are continuous and have continuous 

derivatives with respect to time.  In fact, we can obtain a 

general expression for L(t) and M(t) by getting the inverse 

transforms of T,  and FT.  In the most general case we may have 

m < I ,  m<n, which corresponds to the case in which the highest 

order derivative occuring in equation (11) is that of o...  For 

example, the Voight-Seziwa type of damping is of this sort.  In 

this case, by use of the Dirac-Delta function and its derivatives, 

we can obtain corresponding X  and \i.     If F(t) ir a continuous 
*    * 

function with continuous derivative, and F(0) " 0, integrating 

by parts we see that (•): 

dF -/* 6 (t-x) " F(x)dr , 8 -^T^ (24) 

where the Dirac-Delta function 5(t) is defined by: 

loo  for t - 0 
6(t) •r lo 

and/00  6(t)dt -  1 
for t f 0 -oo 

(25) 

Hence, equation (6) is identical to equation (19) with: 

X - \ • \'8(t)»    ,   n-u + u'§(t)» (26) 

If the difference between the highest order derivatives of o 
ij 

T*7 Strictly speaking, this equation is true only in a limiting 
,t+e sense:  dF/at - lim J^*"  5(t-x,e)f (x)dx where  lim 8(t,e) 

See also L. Schwartz [19], vol. II. p. 17. 

S(t). 
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and c.. occuring in equation (11) is k, then L and M will 

contain k  derivative of the delta-function*  . We xran, in 

fact, determine and discuss all oossible forms of X. and u by 

discussing the roots of the denominator of L and M. We shall 

not, however, go into this matter here, as this would be of no 

interest in application for we do not know coefficients a,, b. 

and c..  We shall be satisfied, then, by remarking that the 

commonly used expressions of L(t) and M(t) are of the following 
m    -at 

exoonential type [18]:  £ A.e  i .  It is easily seen that 
i-o x 

this is included in the inversion oA L and M.  In fact, if the 

denominator of L and M has m real distinct root and (£,n)< m we 

obtain an expression of this sort.  Various attempts have been 

made to determine A. and a. in this expression [20], 

It may be of further interest to note that when a., bj, 

and d   are functions of space coordinates (x,, x«, x^} we 

obtain a further generalization of internal damping, leading 

to L and M of an inhomogeneous media which are also functions 

of coordinates and time. 

Equation  (19) also suggest that in the case of anisotropic 

alastic media we can use extended stress-strain relations, by 

simply taking the asterisk, *. as a subscript in all elastic 

coefficients.  In the following develooment this will be 

the procedure. 

Mathematical justification of the use of the 8-function and 

its derivatives may be found in 3cnwartz's book [19"]. 

( » 
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4. Plate Stress-Strain gelations 

We consider an orthotropic plate having a cylindrical 

symmetry with the axis of cylinder in the direction of the 

z-axis. The stress-strain relations can be written in the 

usual technical notation as: 

xx 

yy 

zz 

o V XX   V X _ 
T"  E" ayy  E~ °zz' z 

- i °xx* -F - £•«„• 

exy " ^ °xy 

eyz " ^ °yz • (27) 

z       z       zz i 

raxxT°y>- X'  *** * ^z~ °xz 

( 

where E, G, and v are the Young's modulus, shear modulus, 

and Poisson's ratio, respectively, in any direction on the 

x-y plane, E and G„ aie those for the z-direction. v  is 
Z       Z X 

the Poisson's ratio corresponding to the contraction in the 

x-direction for a unit elongation in the z-direction. 

Likewise v  is the Poisson's ratio reoresenting the contraction z 

in z-direction for a unit elongaticr. in the x-direction. 

These elastic constants are related to each other by 

symmetry relations, since the strain energy must be a 

positive definite form.  Thus: 

v/E, - v JE.       G - E/2(l + v) (28) 
X  2     Z 

To obtain the plate stress-strain relations we now select a 

particular type of ortr.otropy which is consistent with 

">=&•• 
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1 

v  - e2av  ,  E - e2a£ - e2E' , G - e2yG - «2G' x      z     z z (29) 

Here, a and y  are positive numbers, and v  E and G are 

independent of e. 

We solve components of stress tensor from equation (27) 

and use equations (29), hence: 

oM - -Ij (e^ n-eyy) • 0(e4). oxy  - 2GExy * 0(e
4)  "» 

V " 1^ <eyy +V£«» * 0(e4>- »,. - 2«2<3V * 0(e5> 

2 
°9*  " r| [vs(e„ • e ) • (l-v)ej • 0(e6), zz  J.-V *• z xx   yy        zJ 

> 
(30) 

azx " 2e2(3'ezx + 0{e5) 

( r 

We thus find that the components of the stress tensor ar« of 

the following orders: 

'"xx-VV " °(e2)- (V'°«' - 0<e3». °zz- 0(e4' 

This result agrees with the physical situation that in a 

shear deformable media shear modulus G„ is small, and in a 

transverse stress deformable media E„ is small. The slate z 

stress-strain relations (30) can be so adjusted as to include 

a special tyoe of .internal damping by replacing E, G, and 

G' by E. G and Gf. which are defined by: 
* *    * 

(31) 

£ = E + e* , G = G + g* , a' - G' + g'* (32) 
* * * 

where E, G, and G' are the usual elastic constants, and star(*) 

t-? . 
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u 
multiplication is defined by equation (18).  We note here, 

however, that in this particular internal damping, \ is a 

constant multiole of a.  As a matter of fact: 

-T?*r£   <  H-T*V) •« (33) \ 

We shall, however, keep G' as an independent operator through- 

out the present paper. 

The simplification introduced by equation (33) js not 

necessary for the analysis. The whole analysis can be 

carried out without this assumption.  However, for tho sake of 

simplicity we shall use the assumption contained in equations 

(33). Thus, we have two functional operators E and Q' 

instead of the three representing + h<? hereditary character* 

istics of the medium. We note that many important practical 

classes of problems are contained in the present type of 

internal damping. 

In the present study we shall use the stress-strain 

relations (19) subject to (33), which are valid for three- 

dimensional elastic media with internal damping. We shall, 

then, indicate the terms which should be excluded from the 

resulting expressions, whenever the foregoing type of 

anisotropy is assumed, in order to obtain the formulas which 

would follow if the plate stress-strain relations were used 

to begin with. 
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.    i 5.     Internal Force  and Moment Core; ->nents 

In  a plate  theory,   integrals  of  the  stress  components, 

as  well   as   their  moments   about  the  x and  y axes,   play an 

important  role.     Thus,   we  define  normal   force  co lponents 

(N   ,N   ,N   ),   plane  shear   force  component   N     ,   tre isverse 

shear  components   (Q    Q   ),   bending moment  components 

(M  ,M   ,M     ),   and body  force  and moment   components   (PT, 

P„,P„)   and   (G„,G„,G  )   by the   following  equations   (Fig.   1): y     z xyz 

(NV.NV,N ,N   ) ~f 
h/2 

x'   y'   z'   xy -h/2 
(o     ,   a     ,   a     ,   a     )   dz xx'     yy'      zz'     xy 

h/2 
(Qx- V -4/2   (oxz' v* dz 

(Mx'  My'  V   =^/2   (°xx-   °yy.   VZ dZ 

M
xv  "   "Mvx N       -  -N XV vx 

(a2e3)      (Px.   P    Pz)   -J*/2     (Fx.   F      Fz)     dz X       y     z -h/2 xyz 

V  (34! 

(a3e4/12)      (Gx,  Gy,  G)   - fh/2     (Fx,  Fv,   F  ) z dz x      y       z -h/2 xyz 

where  F   ,   F   ,   F       are  the  body force  components  per unit 

mass. 

Combining equations   (5),      (19)   and   (34)   vn  obtain: 

I* 
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n o„ -   (N  /h)  •   (12/h2)   C*L. • 0(e4) xx 

°yy " (Ny/h) +  (12/h2) ^M
y  

r °^4) 

°zz ' e2(q * 2pC) + 0(e4) 

°xy "   (Nxy/h)   +   d2/h2)   CM^ 0(e4) 

}     (35) 

oyz -   (Qy/h)   +  0(e5) 

xz (Qx/h)  + 0(e°) 

where: 

2P = C«M<*.y.h/2.t)-  ozz(x,y,-h/2,t)]/e2-X.(u1^ ^ 

•  v,   m •   2w9)   •  4u w9 l.T) 2 £2 

2q - Ca„(x,y.h/2.t)   • *„ (x,y,-h/2, t) ]/e2-    2\ 

[Vl +   To.1 * Kl' + Kn' *  X2 *  v, 2)] 

•  2u   (u * •  • { ) 

12 2 If we  eliminate w«  and ^(u,     •  v,   )   between equations   (34), 

after using equations   (19)#and   (36)   we  obtain: 

Nz/h - e'q 

Nxy/h ' 7tl*v)&. luo.r, * vo.l * wo.lwo.., 

Qx/h-«eV   (ux* «,#l) 

Qy/h-«eV   (,1+ w      ) 

(36) 

>      (37) 

* 
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and: 

.21^/h' 

12My/h' 

1-v T£(UI.* + WTI.V 

-S-y E (v,    + VU, -) + 

2ve' 

2v£ 

1-v 
(38) 

12Myx/h " 
—2— E (u, „ • v, -) 
2(l+v) *  i»T1   1'^ 

We note that the terms containing p and q in equations (37) 

and (38) appear because we used the stress-strain relations 

(19), which are given for three-dimensional isotropic media. 

Instead, if we use the plate stress-strain, relations (30), we 

find that these terms disappear from the expressions of N , 

N„, M- and M„. since in tthis case a      m  0(e 1 hence p and q y  x      y zz      ' 

b«*cora« of order See also [ 8] „  In this case, obviously 

N • 0(e ), but it must be taken into account, as there is no 

lower order term in the expression of N_/h. 

The introduction of a constant M  into the expressions of 

Q and Q is due to the fact that transverse shear stress 

distribution across the thickness is not constant.  It is 

known,however, that e ,„ and e„„ are even functions of z. *      '      yz     zx 

Hence integrations across the thickness introduce  such a 

constant #.  Such a constant was first introduced by 

Mindlin [4], and sucessfully replaces k'   of Timoshenko's 

beam theory, [ 21] and 5/6 of the Reissner's plate theory [2], 

Mindlin has also suggested a formula for M  in his paper. 

o 
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O 

(j 

It may be of interest also to note that we reached the 

present combination of E and v in the first terms of equation 

(37) and (38) which are identical to those of the classical 

theory, not by using two-dimensional stress-strain relations, 

but by using the three-dimensional stress-strain relations. 

6.  Equations of Motion 

The equations of motion of an elastic body referred to 

the coordinates in the deformed stage, are sufficient to 

determine the exact plate equations of motion in a large 

deflection theory.  Integration across the thickness in the 

deformed position makes it possible to introduce membrane 

forces and the plate shear-force and bending moment components 

systematically.  In the present theory, the plate thickness 

is assumed to remain constant throughout the motion. 

Equations of motion in curvilinear coordinates are [9]: 

(39) a^i.  - pU1 - F1) 

where p is the mass density per unit volume, F are the 

components of body forces per unit mass and a are the 

components of the acceleration vector.  Indices after the 

semicolon, ; , represents covariflnt differentiation, i.e; 

do 
'11-*r, 

ij rn 
.«J 

** 
• n. .10L 

«l 
(40) 

Here f~ is the Jhristoffel symbol of the second kind and 

is related to the Christoffel symbol of the first kind /T. , 

and the components of the fundamental metric tensor g "* and 
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g^     of the  deformed medium by: 

k k r - r 
ji ij JX dx * a»J       a»x        ^-a 

(41) 
ij.a        dxJ   ox    dx 

Using equations (1), (5) and (41) we find that the components 

of rijfk  are: 

r^-   (e2/2a)   (Vrk^^.r" 

r^-   (e2/2a)   (Vu  • VAW * ^.ft1' 

r      »   (e/2a)w .   r " r       -   (e2/2a)(u    - 
11.3 °'1^ 12,1       21.1 °'1 

•  1 
?wo,l +    ^l.^'T, 

r    - r   - («2/2«) (v0   * ^0 
2 • cVl > .. 

12,2       21,2 '^ '^ •"   '* 

r   - r   - (e/2a)wrt,..  r 
12,3      21,3 °'W       13,1 31,1 x»* 

r -r 
13 

1„ 2 -r -   (e/2a)v,   ,.   T    -T       -   (e'/2a)(£i' 
,2    31,2 ^    13.3    31,3 z x 

* W*  2Cw2),l 

r      -   (e2/2a)(un „„ •  wrt _wft „„ •  Cu,       ). 

T       -   (e2/2a) (T    _  • -iw      2 •  Cv,     )        , 
22  2 '^ '^ '^   '^ 

r       -   (e/2a)w ,   T       -  T       -   (•/2a)u1 , 
22,3 0'T,TJ       23,1       32.1 lfT] 

r      - r    -(•/2a)T1  _   ,  /"    -r    -(e^aUiu2^2 

23,2       32,2 i'TI       23,3  32,3 * 1     " x 

•2Cw9)  ,  r — r . r — r  , r -(«/a)w2 2   •*»       33.1   13,3     33,2  23,3     33,3 

V(42) 
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The terms of the lowest order in o ^ . are: 
»J 

(43) 

;J  axJ  '   ;J  oxJ 

„3J    .   . i£^i •   r3   011 +   2r3  012 +   r3  a22 
;J       axJ 11 12 22 

3    3 Thus, in the present theory, we only need to retain f   ,   ( 
11  12 

o 
and J~.     A more general theory will undoubtedly contain more 

22 
of these coefficients. Therefore, equations (42) may be useful 

for that purpose. 

Using equations (1), (41) and (42) we find that: 

r3" r  + 0(e3) - (e/2a)wrt ._ + 0(e3) 
11  11,3 °»" 

r3 - r      * C(e3) - (e/2a)wrt   + 0(e3) 
12  12,3 °'^ 

r3 - r        • 0(e3) = (e/2a)wo ^ + 0(e
3) 

22   22,3 0>r)r) 

Components  a1  of  the  acceleration vector  in the cartesian 

coordinates x    are given by: 

at 

Hence by equations (3)and (45): 

a1 - L" (45) 

a1 - ax » a e
2(u'o • Cu^) • C(e4) 

az - a - a e'(vo • Cvj) • C(e*) 

3 3 a -a »aew^w0(e) z       o 

Microscooic equations ^f met on (39) t^us b°ccr,e: 

(46) 

1 

i 
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da xx do 
*y 

do 

dy 
xz 

"35" 

do. 

ox 

do    da 
.yy •   .yz 

dy    dz 

do    da    do "zx + 
Juzy + "ua2 

dx    dy T  dz 

P(ax * Fx> 

p(a - F ) H y  y 

j_i   xx      i o   xy 

>(47) 

12 
• rV 

22 yy P(az-V 

Mass density      p   is  given bv 

P pc(l  -   29    •   462 - 893)1/2 - po[l  - 0(e2)] (48) 

-r i where 6 , Gg, 63 are the strain invariants of which 6 "e. 

*0(e ) is the lowest order.  Hence in the present theory 

p • p , that is the change in mass density during the de- 

formation is negligible.  The force and the moment equilibrium 

of a plate element with thickness h, cut off from the plate 

by drawing normals to the deformed median plane, is commonly 

used [5] to reduoe the microscopic equilibrium conditions to 

macroscopic equilibrium equations.  This, of course, represents 

an approximation which replaces the correct equilbrium condition, 

namely, that moments of all order across the thickness 

should be zero.  The foregoing practice, however, only 

insures zero moments of the first and zero orders.  This 

common practice is, however, in accord with the present 

theory.  Hence integrating equations (47) across the thickness, 

we obtain: 

dN dN. h/2 h/2 
<fiT    + -g*  C°xzU/2 =4/2    P(ax  '   Fx)dz •(49) 

M 
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h/2 

•r-h/.p^'V* 

dx 9y       *-°zz^ 
h/2 . 3 , 

• rJ N • 2r NXY • r\ 
-h/2       ll 12 22 

h/2 
f P(az  "  Fz)dz 

-h/2 z z 

t (49) 

Next we  multiply equations   (47)   by  z and integrate  across  the 

thickness.     Hence: 

TT*  -#+ SCOx,(x.y.W2.t)   -   oxz(x,y,-h/2,t>hQx 

h/2 
/        P(ax "  Fx)z dz 

-h/2 

dM aM 

Jy ^   (Jy2* §CV(x'y'h/2't)   +   VU'y''h/2't)]"Q3 
h/2 
/ 
-h/2^'   VZdZ 

) 
(50 

^ ^-n/2 °» z dz) + W %2°yZ 
z dz) + >•..<*.**/*.« 

h/2 
*   o99(x.  7,-h/2,t)>N    -/ p(a„  -  F  ) z dz zz -h/2 7 a 

We  assume  that the  surface   shear   is  zero: 

°xz(x'y'lh/2't)   "  "y2(x,y,th/2,t) (51} 

Using equations (37), (38), (44), and (46), in equations 

1 
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1 

(49)   and   (50)   we obtain: 

e 12 2 
1-v2      *L   o,U o,r)l       2       o,£ o,T)   ',£; 

3 
• T^— e3Q  r *irArr-\^ [u +v-+(w_w      )   "1 

• 0(e5)   - pa2e3(u0  - i>x)   •  0(e5) 

3 

• *n*7) Wt-. ; *..w * '"cfo.,'*] * 0(e5) 

•I. 

- oa2e3(Vo   - P  )   + 0(e5) 

2 

*e G_    1,4 1,T) o,U °,W 

A 

>(52) 

4 
+  iV ggl w    „„  + r ,.e   •   E   (u        •  v    .  + w    „w      )1 

«llw« «„ • 0(e6J   "  oa2e2w*   +  0(e4) ^«4 

r 

12( 5~2J E*(U1.U * VV
1,IT,>  

+ TTT?7T P#l 
+  24(llv)    E* 

(ul,r,r,*   Vl,lr,)   ^A*(U1+   "e.11   *   °(e5) 

-^   paVfu^  -  Gx)   •  0(e6)   , 

\ 
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n ve 
-E* lvl.rm + vul,iT,)   +TO^T)   p, 12(l-vZ)     *      1*W 

+  24U*v)     E*  (ul.rtf +  *!.«>   -**V^1 + wo,r,) 

• 0(e5)   - ^ p  aVfVj  - Gy)  • 0(e6)   . ^   (53) 

WO^TV 
(2w2ViU + ,2Vo,,y ' ° 

Equations '52) and (53) are the equations of motion. 

We note that to obtain these equations we used three- 

dimensional stress-strain relations.  These equations can be 

2      2 reduced further if we take e q and e p for q and p respectively, 

thus leading to a theory in which two-dimensional plate stress- 

strain relations are employed.  In this case,, all terras in- 
2 

volving q and p drop out except the 2e p term of the last of 

equation (53).  We also note that the inertia term in the 

latter equation is of 0(e ). This point will be cleared 

when we used perturbation in time t later. As the last of 

equation (51) is of 0(e ), we ignore this equation in the 

present theory. 

7.  Reduction of the Equations of Motion 

The third equation of (52) may be written in the 

following form: 



1 
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*e2G'   (u,   T  •  T,     )   - -#te2G'Awrt • pa2w"   -  2p - e2N, 

•*" - Vo.« * V.,h * Venn- 
A
2
   *2 

(54) 

From the first and the second of equations (53) v, and u, 

are eliminated with the use of equation (54).  Hence: 

•^STO^ I *>l - ««' "l - T5T Pa2(i'l " V-«'*o.^ 

• (2v»2*G'- E) ep ,/12(l-v) - 0 

• [2ve2*G'-E ] ep /12(l-v) - 0 
* *   fl 

where we used the following properties of the operators 

E and G': 

EG'- G'E , i[E *(l,T,.t)] - E it  . 

£CE*<l,r,,t)]-E$ 

>(55) 

(56) 

which can be proven easily from the defining equations (32). 

We can also, by part integration, prove that: 

 -~.aTT:. 
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(E *) . - E (f+) - e (t)^(l.T).O) 
*  •   »  * 

(E 6)   f+ - E(* f+) - e(t)*U,n,0) • e(t)i(£,n,o) 
(57) 

These identities will be used in the following analysis. 

Differentiating the first of equations (55) with 

respect to \  and the second with respect to r),   adding the 

results to each other and using equations (54), (56) and (57) 

we obtain: 

3 . .\ 
-M e2G'D A2wQ •  pa2(D •    ^/fe2G')Aw^ - pa4h tfe2G'wc 

" B-TJft-:"1t: + 2C'£+ TTTT=v-)   ««2V^P +2h3* G'P 

• £2^ p . .2© AN • h3 *e2G'  N * $-  • 

• fijjfc! * . W§1 • Q      >  •«^CY.    *wc 

where: . 

I' 12(l-v2)  * 

[Y, « - Y(t)^(i.n.o) • Ytt)i(t.n.o) 

>(58) 

7 

K59) 

Here the  operator D takes the  place of  the bending rigidity 

of the plate theory without  internal  damping,  [y,...]   is 

known when the  initial  conditions  are given.     Equations   (54), 

(55)   and   (58)   are the equations of motion  for rotatory and 

transverse motion.     In case  of zero internal  damping,  ty,...]*0 

1 

'; 
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' ( and star, indexed  quantities G', E and D must be replaced 

by G', E and D.  Hence, we can divide these equations through- 
2 

out by ti e G' leading to plate equations with no internal 

damping.  This is done only for equation (58) leading to: 

-DA2w„ • (25JL- • »2$- }  Aw" - pa4h w 

-(p2h3a4/12*e2G') w" • 2[ E— • —^ ]Ap 
°    KtV   ]2(l-v) 

• (2h3/e2)p + (ph3a2/12*e2G') 2p - (D/*G')AN 

• h3N • (ph5/12 M e2G')N • (pa2h3/12)(G . • Gv    , 

•(60) 

x.l   y.n)-0 

D - Eh3/12(l-v2) 

(61) 

Equation (60) takes the place of the classical plate equation: 

-D A2w„ - oa4h w + 2a2h p • h3N = 0 o       o 

which are four terms of equation (60).  The terms containing 

G' represent the effect of shear deformation and the terms 

which are differentiated with respect to time and which con- 
3 

tain (ph /12) as a coefficient represent the effect of rotatory 

inertia.  The effect of the large deformation is contained in 

the expressions of N, since N . N , and N  , given by equation 
*  y     *y 

(37), are multiplied by various derivatives of w in the expression 

(54) cf N leading to a non-linear equation.  Body moment 

comoononts are taken into account with terms G„ . and G  . 
3 

The terai [ (vh /12(l-v)]Ap is not encountered in the classical 

theory.  This is due to the transverse stress component which 

t 
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is ignored in the cla: sical plate theory.  The foregoing 

term is the moment of the plane forces due to contraction in 

the x and y direction  in the presence of surface pressure 

p.  Hence:  In order  o obtain classical plate equation, we 
4 

must let G'  —»OD,  ph /12  » o, while pa h • finite value 

and p —> e p. 

Axial disolacements u^ and v  satisfy the first and second o o ' 

of  equations   (52)   which may be  transformed into  simpler   forms: 

E  ttan -   2(l+v)oa2u>    •  E   (w^    Awn  .   -  %r   -   Aw^     ) 

• 2pa2(l+v)   [-  PT      +  Pv    ] (62) 

E A6    -  pa2(l-v2)6    -  -E [w    -Aw    t  •  w      Aw        + (Aw  )2 

»       © O ^L    0,£      0,| O.T)      O,TI o 

• (l*v)(wQ  -   2  -  wQ  ^wQ nri)]   - v(l+v)Aq •   pa2(l-v2) 

c "'*.?. " py.^ (63) 

where a»    and 6^ are  the  rotation  and the  dilatation defined o o 

by: 

6    " u    »  •  v .      o)"u -v- (64) o        o,£ o,n   •      wo      uo,n o,£ 

Between u^, v , and 6^, ui dual relations exist which are o  o      o  o 

expressed by equations (64) and (65); 

AU,N " ©„ *  *  &»« „   Av - 6. „ -  (d t (65) 0     0,£     0,T)        O     O.T}     0,£ 

We note that when the right sides of equations (62) and (63) 

are taken as zero and E  is replaced by E, we obtain the 
* 

plane rotational and dilational wave equations of the small 

deflection theory.  The right hand sides of these terms 

represent the effects of finite deformation, body forces and 

••••; x 
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the effect of plane contraction due to a load q. 

In application, boundary and initial conditions are usually 

given i  terms of planar displacements u and v  hence it is 

useful to express differential equations in terms of u and v^. o     o 

This is done by first expressing the first two of equations (52) 

in terms of u . o»   and v , co„ r, and then eliminating ai with o'  O,TJ     o' oc\' * o 

the use of equations (62),  Hence: 

(  0 ft 

,'A* uQ • v(l+v)A' q . • (l^v)^pa2[e,coo ] - k* 

A'A* vo *  vll+v)A' q ^ -  (l^)2pa\tta0  .] B' 
(66) 

where: 

A* f - E Af - pa2(l-v2) "f' 

A' f - E^f - 2paZ(l+v) f 

A- - -^'E#[(w0(l
2 + vwC(3, • d-)(w0;lw0^)^] v* - 4A'] 2 M67) 

Wo.n^o.l - Vl^o^.rfP"2*1-^^ 
+ Pa2(1^,2EJ-Px^+Py,l^n 

D* is obtained from A* by interchanging x,\  and ytr\0  respectively. 

Equations (66) are the equations of extensional vibrations 

of visco-elastic plates including the effect of finite trans- 

verse oscillations.  It is interesting to note that the terms 

containing transverse deflection w are completely separated 

from the axial displacements u and v . Thus no coupling 

effect is introduced. The coupling effect between u and 

v is introduced only with the brackets, Tc,  'iv  1 and 
O uO,T}J 

Te . a) «] which are the results of initial conditions. 

Moreover, this coupling effect is introduced with 

I 
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the rotation u> .  These terms disappear for purely elastic 

media where memory function e 2 o„ 

Equations (66) are linear in u and v .  Consequently, 
-ye jr. 

once we obtain w , the right hand members A and B will 

be known. Therefore, the- extensional Vibration problem will 

be reduced to solving the inhomogeneous linear partial 

differential equations (66). 

For elastic plates with zero internal damping equations 

(66) can be written as". 

A2uQ - (1+v) (3-v)E"1pa2Au0 • 2(l+v) (l-v
2)E"2p2a4'u"0 

•  v!l*v)E-14q  r   "   2v(l+v)2E~1pa2q  .   - A E~2 

A2v    -   (1+v) (3-v)E"1pa2Av'    •   2(l+v ) (1-v 2)E*2p2a4'V" o o r o 
>(68) 

B E -2 

where A and B are obtained from A and B by taking E for E . 

Equations (68) are the generalizations of the equations of 

extensional vibrations of the classical theory.  In the 

clacsical theory terras containing A, B, and q are ignored. 

8.  Perturbation in Time 

The above differential equations are extremely complicated 

and do not lend themselves easily to integration.  Simplification 

can be made, however, if some additional assumptions are made. 

For examole, in the application, plates have finite boundaries. 

The stress or deformation wave in the plane of the plate has 

a very large w~ive velocity.  Consequently, a few milliseconds 

after the motion begins, the stress wave will be felt every- 

where on '.he plate.  Thus, in problems where the transient 

1 

•r-%St? 
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state in the planar wave propagation is unimportant, a great 

deal of simplification can be effected by making perturbation 

in tine.  Also assume that the body forces and moments are 

of 0(e4). Hence let: 

T - et (69) 

The first two of equation (49) can then be reduced to: 

»*.i * »,y.„ ' ° • \y.l * S.n '  ° !70) 

3 
since all terms in equation (49) are of order  e  , while 

inertia terms are of order  e  , (See equations (52)). 

Equations (70) are satisfied by the Airy stress function 

F0(l.T],t): 

»* " ^o^ • »xy - -^o,*,, < Ny " Ao,U       
(?1) 

u and v contained in the expressions of N , N and N 

given by equations(37), can be eliminated, thus leading to 

compatibility equations: 

(Nx * vNv) • + (Nv " vNx) rr   " 2(l*v)N_ - - 0      (72) 

Substitution cf equation (71) into (72) gives: 

A2F - vhA q • hE (wrt - 2 - wo .-wft  ) (73) 

The equation for the transverse vibration is obtained by 

combining equations (58) and (71).  The cnly change in equation 

(58) will be in the expression of N, which takes the form: 

W* - F„  w^ tt - 2F„ t w -  • F„ ttw^ (74) 

Cf course, we also set G & G • 0, and transform the terms 
*  y 

containing derivatives with respect to time to derivatives with 

respect to T, by using equation (69).  Equation (58) with N 

! 
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-•        given by (74) and equation (73), are solved simultaneously to 
• J 

determine F and w ,  Once this is done we can then use the o     o 

first two of equations (37 )or (66) to determine u and v since N , o    o     x 

N and N  will be known by equation (71)„  Deformation y    xy 

components u^ and v, can now be solved from equation (55) 

We note that equation (73), without the term vhAq, 

and equation (58  with all terms and the internal damping taken 

as zero, except the first and the ninth terms, gives the 

large static deflection equation given by the Foppl-Karman- 

Timoshenko theory (*)»  Thus the present theory generalizes 

this theory to dynamic problemsc Moreover, it extends the 

theory to take into account the shear deformation rotatory 

inertia, inertial external loading on the surfaces and the 

boundaries of the plates for visco-eiastic plates.  Various 

special cases given below are suggestive in simplifying these 

equations further for practical problems,. 

a.  Zero internal damping 

In this case equation (60) becomes: 

-<pW/12«')w0>TTTT • 2(-^_ • n^L,)*, • 2ta1> 

• (ph3a2/12*3')2p „ - (D/«G')AN • h3N • (ph5/12K3')N  -C (75) 

where N is given by equation (74). 

bo  Small deflection and (a) 

If we use equation (75), and in all the equations which 

follow take N as given by the second of equation*(54), where N , 

(*) The theory was given first by FiJppl  [1"). 
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H  , and N are constants, we obtain small deflection theory. xy       y 

c.  Rotatory inertia omitted and (a) 

3 
This means dropping all terms containing ph /12 in 

equation (75), hence: 

-DA2wQ • (Dpa2/*G')Aw0<TT - paV^^ 

2       3 
• 2(—£f- • mT=v)) AP • 2ha2p - (D/KG^AN • h3N - 0    (76) 

Kh G# 

If we further put •*=  * 0 to obtain static plate deflection, we 

obtain Reissner's equation (70) given in [22], except for 

the term vh /12(l-v),  As explained before, this terra does not 

appear if one starts with the plate stress-strain relations. 

d.  Shear deformation omitted and (a) 

By iettingAfG' —>OD in equation (75), we obtain the plate 

equation in which shear deformation is negligible: 

-DA2wQ + (ph5/12)Awo#TT - Pa
2h3wo<TT + J*^  Ap 

• 2ha2p • h3N - 0 (77) 

Further, if we set phV12 • 0 we obtain the plate equations cf 

Foppl-Karman-Timoshenko theory except for the term containing 

vh /12(l-v) whose presence is explained above. 

e„  Small deflection with axial stresses omitted 

By setting N*0, equation (76) reduces to the equation given 

by Uflyand-Mindlin theory [3. 4] except for the term containing 

vh3/12(l-v). 

(""' 
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9. Boundary and Initial Conditions 

Let n. be the exterior unit normal to the edge surface E 

and T be the stress vectors acting on £. Then the boundary 

conditions on the surface tractions consist of giving T on E 

at all tines: 

T1 - o Jn. prescibed on E (78) 

For the present theory, there is no distinction between contra- 

variant stress vectors T and covariant stress vectors T.-o..n^. 

Let s be the tangent to the boundary curve, C, which is the 

intersection of the deflected medium plane with E.  Then n, 

s, z make a right hand systeme  Let 6 be the angle between n 

and x ard •*  - 6 the angle between n and y. Fig.  2 »  >Ve first 

transform a '   components to the n, s, z system.  Afterwards, 

we obtain the plate boundary conditions on the membrane forces 

by integrating T1 across the thickness frcm -h/2 to +h/2. 

Boundary conditions on the bending moments are obtained by 

multiplying  T  with z  and integrating with respect to z 

across the thickness.  Hence: 

Nn ' 7(Nx * V + 7(Nx " V cos 2 6 + Nxy8xn 2e 

Nns " Y(Ny " Nx
)sin 26 + Nxy cos 26 

Q__ - Q, cos 6 • Qv sin 6 

M„ - i(M, • MJ + i(M_ - M )cos 26 - Nf  sin 26 n  &    x   y   z    x   y xy 

Msn " 7(MJC " VyUin 28 • Vxy   cos 26 

We note that like in Reiss'.er's theory, [2] we have three 

(79) 

(80) 
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bounciary conditions (80) in case of zero membrane forces.  In 

the classical olate theory,, of course, the condition on Q  is nz 
absent,..  In the presence of membrane forces, altogether five 

boundary conditions must be satisfied. 

In case the surface tractions are unknown Lat some support 

conditions are given, depending on the type of support, we 

need to prescribe deformations u f v  w  u-.,. v, and their 

derivatives in various directions.  These conditions are easy 

to express, from the meaning of the deformation components.  Of 

course, zero derivatives of these functions in any direction 

along the boundary express the clamp conditions. 

In general, we :^ight have a mixed condition at the edge 

involving some conditions on traction and some conditions on 

deformations and their directional derivatives.  Altogether, 

five independent mixed conditions are needed at a part of boundary 

on which the normal n is continuous and has first order derivatives, 

Initial conditions are obtained by prescribing the dependent 

variables and their time derivatives of first order. 

An exhaustive study of the boundary and initial conditions 

can be obtained by using the variational principle; which, 

however, seems not worth the trouble. 

Finally, we give the expressions of M , M .sr.d M  . x  y     xy 

Hence M and M  can be obtained in teriro of w^ by means of n     sn o 

equations (80), so that the differential equation for w can 

be treated without reference to the otht;r deformation components. 

This can be done by combining the last two of equations (37) with 

equations (38).  Hence: 
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Kh(yHx - -(hWlKG,; D,(WOU • »«0      > . h/h»)».<V 

5,_2. 
* vQy.„» ' TTTT^) (hJ/^)kG»' P 

,Qy., •»Qx.l' 'TOT) (»5/»2)«V p 

1 
(81) 

WhG.'M yx" l»2'a2)(1-"«VD."o.ir,* la'2h2» 

If the plate stress-strain relations were used, the terms con- 

taining p would drop ^ut.  In case of zero internal damping one 

can also cancel the coefficients XhG'. 

aV/h - -D(wQ .- • vwQ  ,   *   <a/h)3(D/KhG')(Qx ?*vQ  ) 

• v(l+v)(D/E) 2p 

i^/h •D(w o.nn * 
v*« Tt) • (a/h)°(D/tfhG')(Q„ *v0 t) o.U y,*i *x,£ 

>(82) 

• v(l+v) (D/E) 2p 

a*M /* " -d-v) Dwn - • i(a/h)3(l-v)(D/KhG')(Qv +Qv .) 
y* "rtM  » *#•] y#s,, 

In these expressions the terms containing w are identical with 

those of the classical plate theory, while the terms containing 

Q and Q are due to shear deformation. Equations (82) are 

the analogues of Reissner's equation (10) of [2"). 

j n 
; 

f 
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10.  Strain Energy 

The present fcrm of the stress-strain relations (equations 

19) implies that the expression of strain energy V is of the 

following form: 

V - / Udv. (83) 

(v) 

where U is the strain energy density per unit volume. 

U 
1 „ij<. 
7 ° eij (84) 

This form of the strain energy, with stress-strain relations 

given by equations (B ), is identical to that of the infinitesimal 

theory in the case of zero internal damping. This form is of 

course valid for infinitesimal strain but large deformation and 

rotations [23"], which is the basis of the present theory. 

Combining equations (19), (20), and (84), we obtain: 

U - U_ •  IK 

U e ^(\ • 2ji)ez - 2ue| "l 
ud - ei*e •• 2ei.i.;*^i. 

(85) 

Here U  is the elastic energy density and U,, the dissipativo 

energy density. Quantit es 6 and 6« are the first and second 

strain invariants, of which the first is given by the second of 

equations (6) and the second is given as: 

13. .12  _L 2 e 2 e2t3  e2J   3E1  e3*l  er:2  e2*l (86) 

Functions L *nd M are the memory or internal damping 

furctions. 
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1 

( 

For the Voight-Sezawa type or internal damping they are 

given by the second members of equations (26) namely: 

L - \'S . Iff - n'5 4. (87) 
# t t' 

We now use the expression (5) of e..-   in the expression (85) 

of U and integrate with respect to C across the plate thickness, 

then use equations (36) to (38).  The result is: 

U -/ 
h/2 

-h/2 
Udz - UN • UM 

2hEU. N ' Nx[Nx - v(Ny • Nz)]e • Ny[Ny- v(Nz + l^)^ 

* V*« " v(Nx + Ve + 2(1+v)We 
2hEUt, - (6MT/h")[MY - v (Mv + M„)"Jffl • (6Mv/h*)tMv - v (M 

9 

M   '""">•.' ""   x    •y  "z* e     y'" '-"y    '~ z 

• MJ]_ + (6M /h')[M„ - v(M • M )*L + 2(i+v) 

^.(88) 

y- -e I 
(V^Ve + (H/A'e2G')Qx[Qxle • (E/«e2G' )Qy[Qy]e, 

6Mz/h' e2p 
h/2 

S o 
-h/2 zz z dz J 

Here U« and Uw are the strain energy densities per unit area due 

to the membrane force and bending moment components, respectively, 

Subscript e at the end of a bracket indicates the fact thftt only 

the elastic ->art of the expression inside of the bracket must be 

used. We note that U», and U,, consist of two parts, namely, the 

elastic energy and dissioativ3 energy due to damping of which the 

first is obtained by considering the elastic oarts of the membrane 

force and bending moment cosnonencs wh:• ch are ...ulti Dli-Jci by the 

brackets with subscript c.  The dissipative part is the remainder. 

Introduction of M  is ourely to keep the expression symmetrical. z 
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Fig. 1 Plate Force and Moment Components 

•>y 

i 

Fig.   2    Orientation of  the Coordiiiiit^jb  at  the  edge Surface 

PI 
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